Author:
Rautela Mahindra,Williams Alan,Scheinker Alexander
Funder
Los Alamos National Laboratory
Publisher
Springer Science and Business Media LLC
Reference78 articles.
1. Scheinker, A., Edelen, A., Bohler, D., Emma, C. & Lutman, A. Demonstration of model-independent control of the longitudinal phase space of electron beams in the linac-coherent light source with femtosecond resolution. Phys. Rev. Lett. 121, 044801 (2018).
2. Amato, F., Guignard, F., Robert, S. & Kanevski, M. A novel framework for spatio-temporal prediction of environmental data using deep learning. Sci. Rep. 10, 22243 (2020).
3. Zhou, Z., Yang, X., Rossi, R., Zhao, H. & Yu, R. Neural point process for learning spatiotemporal event dynamics. In Learning for Dynamics and Control Conference, 777–789 (PMLR, 2022).
4. Vinuesa, R. & Brunton, S. L. Enhancing computational fluid dynamics with machine learning. Nat. Comput. Sci. 2, 358–366 (2022).
5. Rautela, M., Huber, A., Senthilnath, J. & Gopalakrishnan, S. Inverse characterization of composites using guided waves and convolutional neural networks with dual-branch feature fusion. Mech. Adv. Mater. Struct. 29, 6595–6611 (2022).