Nutrient-related metabolite profiles explain differences in body composition and size in Nile tilapia (Oreochromis niloticus) from different lakes

Author:

Bayissa Tokuma Negisho,Geerardyn Michelle,Vanhauteghem Donna,Wakjira Mulugeta,Janssens Geert Paul Jules

Abstract

AbstractThis study investigated how metabolite analysis can explain differences in tissue composition and size in fish from different habitats. We, therefore, studied Nile tilapia (Oreochromis niloticus) from three Ethiopian lakes (Gilgel Gibe, Ziway, and Langano) using dried bloodspot (DBS) analysis of carnitine esters and free amino acids. A total of sixty (N = 60) Nile tilapia samples were collected comprising twenty (n = 20) fish from each lake. The proximate composition of the targeted tissues (muscle, skin, gill, gut, and liver) were analyzed. The DBS samples were analyzed for acylcarnitine and free amino acid profiles using quantitative electrospray tandem mass spectrometry. Metabolite ratios were calculated from relevant biochemical pathways that could identify relative changes in nutrient metabolism. The mean weight of Nile tilapia sampled from each lake showed weight variation among the lakes, fish from Lake Ziway were largest (178 g), followed by Gilgel Gibe reservoir (134 g) and Lake Langano (118 g). Fish from Gilgel Gibe showed significantly higher fat composition in all tissues (P < 0.05) except the liver in which no significant variation was observed. The source of fish affected the tissue fat composition. Marked differences were observed in Nile tilapia metabolic activity between the lakes. For instance, the lower body weight and condition of the fish in Lake Langano coincided with several metabolite ratios pointing to a low flow of glucogenic substrate to the citric acid cycle. The low propionyl to acetylcarnitine ratio (C3:C2) in Gilgel Gibe fish is indicating that more of the available acetyl CoA is not led into the citric acid cycle, but instead will be used for fat synthesis. The metabolic markers for lipogenesis and metabolic rate could explain the high-fat concentration in several parts of the body composition of fish from Gilgel Gibe. Our results show that nutrition-related blood metabolite ratios are useful to understand the underlying metabolic events leading to the habitat-dependent differences in the growth of Nile tilapia, and by extension, other species.

Funder

Vlaamse Interuniversitaire Raad

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3