Fabrication of a magnetic alginate-silk fibroin hydrogel, containing halloysite nanotubes as a novel nanocomposite for biological and hyperthermia applications

Author:

Eivazzadeh-Keihan Reza,Sadat Zahra,Aghamirza Moghim Aliabadi Hooman,Ganjali Fatemeh,Kashtiaray Amir,Salimi Bani Milad,Komijani Samira,Ahadian Mohammad Mahdi,salehpour Nabi,Ahangari Cohan Reza,Maleki Ali

Abstract

AbstractIn this study, the main focus was on designing and synthesizing a novel magnetic nanobiocomposite and its application in hyperthermia cancer treatment. Regarding this aim, sodium alginate (SA) hydrogel with CaCl2 cross-linker formed and modified by silk fibroin (SF) natural polymer and halloysite nanotubes (HNTs), followed by in situ Fe3O4 magnetic nanoparticles preparation. No important differences were detected in red blood cells (RBCs) hemolysis, confirming the high blood compatibility of the treated erythrocytes with this nanobiocomposite. Moreover, the synthesized SA hydrogel/SF/HNTs/Fe3O4 nanobiocomposite does not demonstrate toxicity toward HEK293T normal cell line after 48 and 72 h. The anticancer property of SA hydrogel/SF/HNTs/Fe3O4 nanobiocomposites against breast cancer cell lines was corroborated. The magnetic saturation of the mentioned magnetic nanobiocomposite was 15.96 emu g−1. The specific absorption rate (SAR) was measured to be 22.3 W g−1 by applying an alternating magnetic field (AMF). This novel nanobiocomposite could perform efficiently in the magnetic fluid hyperthermia process, according to the obtained results.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3