Causes and consequences of acidification in the Baltic Sea: implications for monitoring and management

Author:

Gustafsson Erik,Carstensen Jacob,Fleming Vivi,Gustafsson Bo G.,Hoikkala Laura,Rehder Gregor

Abstract

AbstractIncreasing atmospheric CO2 drives ocean acidification globally. In coastal seas, acidification trends can however be either counteracted or enhanced by other processes. Ecosystem effects of acidification are so far small in the Baltic Sea, but changes should be anticipated unless CO2 emissions are curbed. Possible future acidification trends in the Baltic Sea, conditional on CO2 emissions, climate change, and changes in productivity, can be assessed by means of model simulations. There are uncertainties regarding potential consequences for marine organisms, partly because of difficulties to assign critical thresholds, but also because of knowledge gaps regarding species’ capacity to adapt. Increased temporal and spatial monitoring of inorganic carbon system parameters would allow a better understanding of current acidification trends and also improve the capacity to predict possible future changes. An additional benefit is that such measurements also provide quantitative estimates of productivity. The technology required for precise measurements of the inorganic carbon system is readily available today. Regularly updated status evaluations of acidification, and the inorganic carbon system in general, would support management when assessing climate change effects, eutrophication or characteristics of the pelagic habitats. This would, however, have to be based on a spatially and temporally sufficient monitoring program.

Funder

Nordic Council of Ministers

Swedish Agency for Marine and Water Management

Bundesamt für Seeschiffahrt und Hydrographie

Stockholm University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference72 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3