Author:
Lee Sang Ho,Park Jin,Min So Ra,Kim Geon Uk,Jang Jaewon,Bae Jin-Hyuk,Lee Sin-Hyung,Kang In Man
Abstract
AbstractIn this paper, a capacitorless one-transistor dynamic random access memory (1 T-DRAM) based on a polycrystalline silicon (poly-Si) metal-oxide-semiconductor field-effect transistor with the asymmetric dual-gate (ADG) structure is designed and analyzed through a technology computer-aided design (TCAD) simulation. A poly-Si thin film was used within the device due to its low fabrication cost and feasibility in high-density three-dimensional (3-D) memory arrays. We studied the transfer characteristics and memory performances of the single-layer ADG 1 T-DRAMs and the 3-D stacked ADG 1 T-DRAMs and analyze the reliability depending on the location and the number of grain-boundaries (GBs). The relative standard deviation (RSD) of the threshold voltages (Vth) is depending on the location and the number of GBs. The RSDs of the single-layer ADG 1 T-DRAM and the 3-D stacked ADG 1 T-DRAM are 1.58% and 0.68%, respectively. The RSDs of retention time representing the memory performances are 54.7% and 41%, respectively. As a result of the 3-D stacked structure, the averaging effect occurs, which greatly aids in improving the reliability of the memory performances as well as the transfer characteristics of 1 T-DRAMs depending on the influence of GBs. The proposed 3-D stacked ADG 1 T-DRAM helps implement a high-reliability single-cell memory device.
Funder
National Research Foundation of Korea (NRF) grant funded by the Korea government
BK21 FOUR project funded by the Ministry of Education, Korea
Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education
National R&D Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT
Semiconductor Industry Collaborative Project between Kyungpook National University and Samsung Electronics Co. Ltd
IC Design Education Center (IDEC), Korea
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献