An integrated evaluation approach of wearable lower limb exoskeletons for human performance augmentation

Author:

Zhang Xiao,Chen Xue,Huo Bo,Liu Chenglin,Zhu Xiaorong,Zu Yuanyuan,Wang Xiliang,Chen Xiao,Sun Qing

Abstract

AbstractWearable robots have been growing exponentially during the past years and it is crucial to quantify the performance effectiveness and to convert them into practical benchmarks. Although there exist some common metrics such as metabolic cost, many other characteristics still needs to be presented and demonstrated. In this study, we developed an integrated evaluation (IE) approach of wearable exoskeletons of lower limb focusing on human performance augmentation. We proposed a novel classification of trial tasks closely related to exoskeleton functions, which were divided into three categories, namely, basic trial at the preliminary phase, semi-reality trial at the intermediate phase, and reality trial at the advanced phase. In the present study, the IE approach has been exercised with a subject who wore an active power-assisted knee (APAK) exoskeleton with three types of trial tasks, including walking on a treadmill at a certain angle, walking up and down on three-step stairs, and ascending in 11-storey stairs. Three wearable conditions were carried out in each trial task, i.e. with unpowered exoskeleton, with powered exoskeleton, and without the exoskeleton. Nine performance indicators (PIs) for evaluating performance effectiveness were adopted basing on three aspects of goal-level, task-based kinematics, and human–robot interactions. Results indicated that compared with other conditions, the powered APAK exoskeleton make generally lesser heart rate (HR), Metabolic equivalent (METs), biceps femoris (BF) and rectus femoris (RF) muscles activation of the subject at the preliminary phase and intermediate phase, however, with minimal performance augmentation at advanced phase, suggesting that the APAK exoskeleton is not suitable for marketing and should be further improved. In the future, continuous iterative optimization for the IE approach may help the robot community to attain a comprehensive benchmarking methodology for robot-assisted locomotion more efficiently.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3