Different levels of autophagy induced by transient serum starvation regulate metabolism and differentiation of porcine skeletal muscle satellite cells

Author:

Wang Yi,Gao Juan,Fan Bojun,Hu Yuemin,Yang Yuefei,Wu Yajie,Li Feng,Ju Huiming

Abstract

AbstractThis study aimed to investigate the effects of different levels of autophagy induced by transient serum starvation on the metabolism, lipid metabolism, and differentiation of porcine skeletal muscle satellite cells (SMSCs) to preliminary elucidate the role and function of autophagy in the regulatory network of skeletal muscle development. Different levels of autophagy were induced by controlling the serum concentration in the culture system for 24 h. Apoptosis, membrane potential, reactive oxygen species (ROS), ATP, and myogenic and lipogenic differentiation markers were monitored to determine if autophagy affected the metabolism and differentiation of SMSCs. Autophagy was induced in SMSCs via serum starvation (5%, 15%), as evidenced by decreased p62 and mTOR phosphorylation levels and increased LC3B lipidation and AMPK phosphorylation levels. Transmission electron microscopy revealed the presence of autophagosomes, and the rates of morphologically abnormal nuclei and mitochondria gradually increased with the decrease in serum concentration, the number of autophagic lysosomes also increased, indicating that 5% serum starvation induced severe autophagy, while 15% serum starvation induced mild autophagy. Compared with the control group and 15% serum-starved SMSCs, SMSCs undergoing 5% serum starvation had the highest intracellular ATP and ROS levels, the highest percentage of apoptotic cells, and the lowest membrane potential. The 15% serum-starved SMSCs had the highest membrane potential, but the percentage of apoptotic cells did not change significantly compared with the control group. The levels of the myogenic markers MyoD1 and MHC were significantly higher in 15% serum-starved SMSCs than in serum-sufficient SMSCs and the lowest in the 5% serum-starved SMSCs. The lipid contents (measured by Oil Red O staining and quantification of triglycerides) and lipogenic markers Peroxisome Proliferators-activated Receptors γ and Lipoprotein Lipase were also significantly higher in SMSCs undergoing 15% serum starvation than in the control group, and the lowest in the 5% serum-starved SMSCs. Different levels of starvation stress induce different levels of autophagy. Mild autophagy induced by moderate serum starvation promotes the metabolism and differentiation of SMSCs, while severe autophagy renders SMSCs more apoptotic, abnormal metabolism and suppresses SMSC differentiation into adipocytes or myocytes, and reduces lipid metabolisms. Our study suggests that autophagy plays a role in skeletal muscle development and may help design strategies for improving meat production traits in domestic pigs.

Funder

the Priority Academic Program Development of Jiangsu Higher Education Institution

the National Natural Science Foundation of China

the Natural Science Foundation of Jiangsu

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3