Impact of various microplastics on the morphological characteristics and nutrition of the young generation of beech (Fagus sylvatica L.)

Author:

Lasota Jarosław,Błońska Ewa,Kempf MartaORCID,Kempf Piotr,Tabor Sylwester

Abstract

AbstractMicroplastics have the capacity to accumulate in soil due to their high resistance to degradation, consequently altering soil properties and influencing plant growth. This study focused on assessing the impact of various types and doses of microplastics on beech seedling growth. In our experiment, we used polypropylene and styrene granules with diameter of 4.0 mm in quantities of 2.5% and 7%. The hypothesis was that microplastics significantly affect seedlings' nutritional status and growth characteristics. The research analysed seedlings' nutrition, root morphological features, above-ground growth, and enzymatic activity in the substrate. Results confirmed the importance of microplastics in shaping the nutritional status of young beech trees. Microplastic type significantly impacted N/P and Ca/Mg stoichiometry, while microplastic quantity influenced Ca/Al and Ca+K+Mg/Al stoichiometry. Notably, only in the case of root diameter were significantly thicker roots noted in the control variant, whereas microplastics played a role in shaping the leaves' characteristics of the species studied. The leaf area was significantly larger in the control variant compared to the variant with polypropylene in the amount of 2.5% and styrene in the amount of 7%. Additionally, the study indicates a significant impact of microplastics on enzyme activity. In the case of CB and SP, the activity was twice as high in the control variant compared to the variants with microplastics. In the case of BG, the activity in the control variant was higher in relation to the variants used in the experiment. Research on the impact of microplastics on the growth of beech seedlings is crucial for enhancing our understanding of the effects of environmental pollution on forest ecosystems. Such studies are integral in shaping forestry management practices and fostering a broader public understanding of the ecological implications of plastic pollution.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3