Reconstruction of 3D topographic landscape in soft X-ray fluorescence microscopy through an inverse X-ray-tracing approach based on multiple detectors

Author:

Ippoliti Matteo,Billè Fulvio,Karydas Andreas G.,Gianoncelli Alessandra,Kourousias George

Abstract

AbstractThe study of X-ray fluorescence (XRF) emission spectra is a powerful technique used in applications that range from biology to cultural heritage. Key objectives of this technique include identification and quantification of elemental traces composing the analyzed sample. However, precise derivation of elemental concentration is often hampered by self-absorption of the XRF signal emitted by light constituents. This attenuation depends on the amount of sample present between the radiation source and detection system and allows for the exploitation of self-absorption in order to recover a sample topography. In this work, an X-ray-tracing application based on the use of multiple silicon drift detectors, is introduced to inversely reconstruct a 3D sample with correct topographical landscape, from 2D XRF count rates maps obtained from spectroscopy. The reconstruction was tested on the XRF maps of a simulated sample, which is composed of three cells with different size but similar composition. We propose to use the recovered 3D sample topography in order to numerically compute the self-absorption effects on the X-ray fluorescence radiation, thereby showing that a quantitative correction is possible. Lastly, we present a web application which implements the suggested methodology, in order to demonstrate its feasibility and applicability, available at: https://github.com/ElettraSciComp/xrfstir.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3