A novel hybrid supervised and unsupervised hierarchical ensemble for COVID-19 cases and mortality prediction

Author:

Yakovyna Vitaliy,Shakhovska Nataliya,Szpakowska Aleksandra

Abstract

AbstractThough COVID-19 is no longer a pandemic but rather an endemic, the epidemiological situation related to the SARS-CoV-2 virus is developing at an alarming rate, impacting every corner of the world. The rapid escalation of the coronavirus has led to the scientific community engagement, continually seeking solutions to ensure the comfort and safety of society. Understanding the joint impact of medical and non-medical interventions on COVID-19 spread is essential for making public health decisions that control the pandemic. This paper introduces two novel hybrid machine-learning ensembles that combine supervised and unsupervised learning for COVID-19 data classification and regression. The study utilizes publicly available COVID-19 outbreak and potential predictive features in the USA dataset, which provides information related to the outbreak of COVID-19 disease in the US, including data from each of 3142 US counties from the beginning of the epidemic (January 2020) until June 2021. The developed hybrid hierarchical classifiers outperform single classification algorithms. The best-achieved performance metrics for the classification task were Accuracy = 0.912, ROC-AUC = 0.916, and F1-score = 0.916. The proposed hybrid hierarchical ensemble combining both supervised and unsupervised learning allows us to increase the accuracy of the regression task by 11% in terms of MSE, 29% in terms of the area under the ROC, and 43% in terms of the MPP metric. Thus, using the proposed approach, it is possible to predict the number of COVID-19 cases and deaths based on demographic, geographic, climatic, traffic, public health, social-distancing-policy adherence, and political characteristics with sufficiently high accuracy. The study reveals that virus pressure is the most important feature in COVID-19 spread for classification and regression analysis. Five other significant features were identified to have the most influence on COVID-19 spread. The combined ensembling approach introduced in this study can help policymakers design prevention and control measures to avoid or minimize public health threats in the future.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3