The effect of cobalt/copper ions on the structural, thermal, optical, and emission properties of erbium zinc lead borate glasses

Author:

Taha Eman O.,Saeed Aly

Abstract

AbstractA host glass network of 70B2O3–10Pb3O4–18ZnO–2Er2O3 (ErCoCu1) was proposed and the impact of 1 mol% of Co or/and Cu ions on its structural, thermal, optical, and green emission properties was studied extensively. The X-ray diffraction spectra confirmed the amorphous structure of the produced glasses. Density and density-based parameters behavior showed that the Co or/and Cu ions fill the interstitial positions of the proposed ErCoCu1 network, causing its compactness. Both ATR-FTIR and Raman Spectra affirmed the formation of the fundamental structural units of the borate network, B–O–B linkage, BO3, and BO4. Additionally, the penetration of Co or/and Cu ions inside the ErCoCu1 converts the tetrahedral BO4 units to triangle BO3 causing its richness by non-bridging oxygens. The addition of Co or/and Cu reduces the glass transition temperature as a result of the conversion of the BO4 to BO3 units. Optical absorption spectra for the host glass ErCoCu1 showed many of the distinguished absorption bands of the Er3+ ion. Penetration of Co ion generates two broadbands referring to the presence of Co2+ ions in both tetrahedral and octahedral coordination and Co3+ ions in the tetrahedral coordination. In the Cu-doped glasses, the characteristic absorption bands of Cu2+ and Cu+ were observed. A green emission was generated from the ErCoCu1 glass under 380 nm excitation wavelength. Moreover, no significant effect of Co or/and Cu on the emission spectra was recorded. The considered glasses had appropriate properties qualifying them for optoelectronics and nonlinear optics applications.

Funder

Egyptian Russian University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3