Advanced extraction of PV parameters’ models based on electric field impacts on semiconductor conductivity using QIO algorithm

Author:

Bayoumi Ahmed S. A.,El Sehiemy Ragab A.,El-Kemary Maged,Abaza Amlak

Abstract

AbstractThis article presents a novel approach for parameters estimation of photovoltaic cells/modules using a recent optimization algorithm called quadratic interpolation optimization algorithm (QIOA). The proposed formula is dependent on variable voltage resistances (VVR) implementation of the series and shunt resistances. The variable resistances reduced from the effect of the electric field on the semiconductor conductivity should be included to get more accurate representation. Minimizing the mean root square error (MRSE) between the measured (I–V) dataset and the extracted (V–I) curve from the proposed electrical model is the main goal of the current optimization problem. The unknown parameters of the proposed PV models under the considered operating conditions are identified and optimally extracted using the proposed QIOA. Two distinct PV types are employed with normal and low radiation conditions. The VVR TDM is proposed for (R.T.C. France) silicon PV operating at normal radiation, and eleven unknown parameters are optimized. Additionally, twelve unknown parameters are optimized for a Q6-1380 multi-crystalline silicon (MCS) (area 7.7 cm2) operating under low radiation. The efficacy of the QIOA is demonstrated through comparison with four established optimizers: Grey Wolf Optimization (GWO), Particle Swarm Optimization (PSO), Salp Swarm Algorithm (SSA), and Sine Cosine Algorithm (SCA). The proposed QIO method achieves the lowest absolute current error values in both cases, highlighting its superiority and efficiency in extracting optimal parameters for both Single-Crystalline Silicon (SCS) and MCS cells under varying irradiance levels. Furthermore, simulation results emphasize the effectiveness of QIO compared to other algorithms in terms of convergence speed and robustness, making it a promising tool for accurate and efficient PV parameter estimation.

Funder

Kafr El Shiekh University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3