Shedding light on the environmental impact of the decomposition of perovskite solar cell

Author:

Sabahi Negin,Shahroosvand Hashem

Abstract

AbstractPerovskite materials, as the heart of perovskite solar cells (PSC), attracted great interest in the photovoltaic community since the efficiency of PSC dramatically increased to over 25% in a short period. However, the presence of Pb metal in the perovskite crystalline limits the progress of this new generation of solar cells from environmental aspects. Here, we have systematically investigated the impact of the decomposition of perovskite material on the special plant, named Coleus. The influence of the decomposition of a perovskite solar cell (p-PbI2) has a three-fold lower destruction than commercial PbI2 (s-PbI2) in the same condition. The p-PbI2 made destroying the roots and leafs slower and smoother than s-PbI2, which the amount of water absorption with the plant’s root from p-PbI2 is two-fold lower than s-PbI2. The atomic absorption spectroscopy (AAS) indicated that the amount of Pb in the first week is about 3.2 and 2.1 ppm for s-PbI2, and p-PbI2, respectively, which in following for two next weeks reached to about relatively close together and finally in the last week decreased to 1.8 ppm for s-PbI2 and increased to 2.4 ppm for p-PbI2. This paper opens new avenues and challenges about the actual scenario on the impact of perovskite materials in PSCs on the plant and live metabolisms.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3