UAMC-3203 inhibits ferroptosis and promotes functional recovery in rats with spinal cord injury

Author:

Kan Shunli,Feng Sa,Zhao Xinyan,Chen Ziyu,Zhou Mengmeng,Liu Linyan,Zhu Haoqiang,Cheng Yuelin,Fu Xuanhao,Hu Wei,Zhu Rusen

Abstract

AbstractSpinal cord injury (SCI) results in irreversible neurological impairment. After SCI, Ferritinophagy-induced free iron released from ferritin can lead to extensive lipid peroxidation and aggravate neurological damage. NRF2/HO-1 pathway is to endow cells with a protective effect against oxidative stress, and it plays an important role in the transcriptional activation of a series of antioxidant and detoxification genes. UAMC-3203 is a ferrostatin-1(Fer-1) analogue with better solubility and stability, which can more effectively inhibit ferroptosis after SCI. A rat SCI model was constructed, and the recovery of motor function was observed after treatment with UAMC-3203. ELISA was employed to assess the impact of UAMC-3203 on inflammation-related factors, while immunofluorescence was utilized to investigate the influence of UAMC-3203 on neuronal count as well as the activation of astrocytes and microglia/macrophages. Malondialdehyde (MDA) were detected to reflect the level of oxidation products. Western blot analysis was used to measure the level of ferroptosis markers and the expression of NRF2/HO-1. Our findings demonstrate that UAMC-3203 inhibits the production of reactive oxygen species (ROS) and lipid peroxides, preventing ferroptosis and reducing neuronal degeneration. Additionally, UAMC-3203 suppresses astrocyte proliferation and microglia/macrophage activation, as well as the release of ferroptosis-related inflammatory factors. These combined effects contribute to the preservation of spinal cord tissue and the facilitation of motor function recovery. UAMC-3203 maybe inhibit ferroptosis after SCI to promote functional recovery.

Funder

Tianjin Union Medical Center

Natural Science Foundation of Tianjin

Tianjin Key Medical Discipline (Specialty) Construction Project

Tianjin Health Commission Science and Technology Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3