Heat transfer and hybrid ferrofluid flow over a nonlinearly stretchable rotating disk under the influence of an alternating magnetic field

Author:

Rauf Abdul,Mushtaq Aqsa,Shah Nehad Ali,Botmart Thongchai

Abstract

AbstractUnder the influence of an alternating magnetic field, flow and heat transfer of a ferrofluid flow over a flexible revolving disc are examined. The flow is hampered by the external magnetic field, which is dependent on the alternating magnetic field's frequency. The current work examines the heat transfer and three-dimensional flow of fluid with high viscosity on a spinning disc that is stretched in a radial direction. The governing equations' symmetries are computed using Lie group theory. In the problem, there is a resemblance that can accomplish with radially stretching velocities divided into two categories, specifically, linear and power-law, by imposing limits from the boundary conditions. The literature has already covered linear stretching, but this is the first discussion of power-law stretching. The governing partial differential is turned into an ordinary differential equations system using additional similarity transformations, which are then numerically handled. The results are presented for hybrid alumina–copper/ethylene glycol ($${\text{Al}}_{2} {\text{O}}_{3} - {\text{Cu}}/{\text{EG}}$$ Al 2 O 3 - Cu / EG ) nanofluid. The calculated findings are novel, and it has been seen that they accord quite well with those of the earlier extended literature. It has been found that hybrid nanofluid flow outperforms nanofluid flow in terms of Nusselt number or heat transfer rate. The heat transmission in the fluid is reduced as the Prandtl number is increased. The heat transfer increases as dimensionless magnetic field intensity $$\xi$$ ξ increases. Also, axial velocity and radial velocity decrease as magnetic field intensity increases. As the ferromagnetic interaction parameter is raised, the efficiency of heat transmission decreased. For non-linear stretching with stretching parameter 0 < m < 1, the velocity decreases with the increase in m.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference77 articles.

1. Von Kármán, Th. Uber laminare und turbulente Reibung. Z. Angew. Math. Mech. 1, 233–252 (1921).

2. Cochrn, W. G. The flow due to a rotating disc. In Mathematical proceedings of the Cambridge philosophical society 365–3751 (Cambridge University Press, Cambridge, 2011).

3. Millsaps, K. & Pohlhausen, K. Heat transfer by laminar flow from a rotating plate. J. Aeronaut. Sci. 19(2), 120–126 (1952).

4. Awad, M. M. Heat transfer from a rotating disk to fluids for a wide range of Prandtl numbers using the asymptotic model. J. Heat Transf. 130(1), 014505 (2008).

5. Tadmor, Z. & Klein, I. Engineering Principles of Plasticating Extrusion (Van Nostrand Reinhold Company, New York, 1970).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3