Amorphous carbon nitride dual-function anti-reflection coating for crystalline silicon solar cells

Author:

Addie Ali J.,Ismail Raid A.,Mohammed Mudhafar A.

Abstract

AbstractCrystalline silicon (c-Si) solar cells have dominated the photovoltaic industry for decades. However, due to high reflectivity and the presence of numerous types of surface contaminants, the solar cell only absorbs a limited amount of the incident solar radiation. To improve the efficiency of the solar cell, anti-reflection and self-cleaning coatings must be applied to the surface. The main objective of this work is to synthesize an amorphous carbon nitride CNx thin film as a novel dual-function anti-reflection coating (ARC) for c-Si solar cells. The CNx film was synthesized by the RF magnetron sputtering technique and characterized by different chemical, structural, and optical analysis techniques. The performance of CNx film was investigated via measuring the reflectance, photoelectric conversion efficiency, and external quantum efficiency. The minimum reflectance was 0.3% at 550 nm wavelength, and the external quantum efficiency achieved was more than 90% within the broad wavelength range. The open circuit voltage and short circuit current density that have been achieved are 578 mV and 33.85 mAcm−2, respectively. Finally, a photoelectric conversion efficiency of 13.05% was achieved with the coated c-Si solar cell in comparison with 5.52% for the uncoated c-Si solar cell. This study shows that CNx films have promising application potential as an efficient ARC for c-Si solar cells as compared to traditional ARC materials.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3