Selection of pre-trained weights for transfer learning in automated cytomegalovirus retinitis classification

Author:

Choopong Pitipol,Kusakunniran Worapan

Abstract

AbstractCytomegalovirus retinitis (CMVR) is a significant cause of vision loss. Regular screening is crucial but challenging in resource-limited settings. A convolutional neural network is a state-of-the-art deep learning technique to generate automatic diagnoses from retinal images. However, there are limited numbers of CMVR images to train the model properly. Transfer learning (TL) is a strategy to train a model with a scarce dataset. This study explores the efficacy of TL with different pre-trained weights for automated CMVR classification using retinal images. We utilised a dataset of 955 retinal images (524 CMVR and 431 normal) from Siriraj Hospital, Mahidol University, collected between 2005 and 2015. Images were processed using Kowa VX-10i or VX-20 fundus cameras and augmented for training. We employed DenseNet121 as a backbone model, comparing the performance of TL with weights pre-trained on ImageNet, APTOS2019, and CheXNet datasets. The models were evaluated based on accuracy, loss, and other performance metrics, with the depth of fine-tuning varied across different pre-trained weights. The study found that TL significantly enhances model performance in CMVR classification. The best results were achieved with weights sequentially transferred from ImageNet to APTOS2019 dataset before application to our CMVR dataset. This approach yielded the highest mean accuracy (0.99) and lowest mean loss (0.04), outperforming other methods. The class activation heatmaps provided insights into the model's decision-making process. The model with APTOS2019 pre-trained weights offered the best explanation and highlighted the pathologic lesions resembling human interpretation. Our findings demonstrate the potential of sequential TL in improving the accuracy and efficiency of CMVR diagnosis, particularly in settings with limited data availability. They highlight the importance of domain-specific pre-training in medical image classification. This approach streamlines the diagnostic process and paves the way for broader applications in automated medical image analysis, offering a scalable solution for early disease detection.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3