Machine learning‑based prediction of survival prognosis in esophageal squamous cell carcinoma

Author:

Zhang Kaijiong,Ye Bo,Wu Lichun,Ni Sujiao,Li Yang,Wang Qifeng,Zhang Peng,Wang Dongsheng

Abstract

AbstractThe current prognostic tools for esophageal squamous cell carcinoma (ESCC) lack the necessary accuracy to facilitate individualized patient management strategies. To address this issue, this study was conducted to develop a machine learning (ML) prediction model for ESCC patients' survival management. Six ML approaches, including Rpart, Elastic Net, GBM, Random Forest, GLMboost, and the machine learning-extended CoxPH method, were employed to develop risk prediction models. The model was trained on a dataset of 1954 ESCC patients with 27 clinical features and validated on a dataset of 487 ESCC patients. The discriminative performance of the models was assessed using the concordance index (C-index). The best performing model was used for risk stratification and clinical evaluation. The study found that N stage, T stage, surgical margin, tumor grade, tumor length, sex, MPV, AST, FIB, and Mg are the important feature for ESCC patients’ survival. The machine learning-extended CoxPH model, Elastic Net, and Random Forest had similar performance in predicting the mortality risk of ESCC patients, and outperformed GBM, GLMboost, and Rpart. The risk scores derived from the CoxPH model effectively stratified ESCC patients into low-, intermediate-, and high-risk groups with distinctly different 3-year overall survival (OS) probabilities of 80.8%, 58.2%, and 29.5%, respectively. This risk stratification was also observed in the validation cohort. Furthermore, the risk model demonstrated greater discriminative ability and net benefit than the AJCC8th stage, suggesting its potential as a prognostic tool for predicting survival events and guiding clinical decision-making. The classical algorithm of the CoxPH method was also found to be sufficiently good for interpretive studies.

Funder

Sichuan Province Science and Technology Support Program

Sichuan Provincial Cadre Health Research Project

Chengdu Science and Technology Bureau Project

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3