Conjuncted photo-thermoelectric effect in ZnO–graphene nanocomposite foam for self-powered simultaneous temperature and light sensing

Author:

Zhao Huiqi,Ouyang Bangsen,Han Lu,Mishra Yogendra Kumar,Zhang Zhiqiang,Yang Ya

Abstract

AbstractThe self-powered sensors are more and more important in current society. However, detecting both light and temperature signals simultaneously without energy waste and signal interference is still a challenge. Here, we report a ZnO/graphene nanocomposite foam-based self-powered sensor, which can realize the simultaneous detection of light and temperature by using the conjuncted photo-thermoelectric effect in ZnO–graphene nanocomposite foam sensor. The output current under light, heating and cooling of the device with the best ZnO/graphene ratio (8:1) for the foam can reach 1.75 µA, 1.02 µA and 0.70 µA, respectively, which are approximately three fold higher than them of devices with other ZnO/graphene ratios. The ZnO–graphene nanocomposite foam device also possesses excellent thermoelectric and photoelectric performances for conjuncted lighting and heating detection without mutual interference. The ZnO–graphene nanocomposite foam device exhibits a new designation on the road towards the fabrication of low cost and one-circuit-based multifunction sensors and systems.

Funder

the National Key R

the 2019 Project of Liaoning Education Department

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3