Iterated cross validation method for prediction of survival in diffuse large B-cell lymphoma for small size dataset

Author:

Chang Chin-Chuan,Chen Chien-Hua,Hsieh Jer-Guang,Jeng Jyh-Horng

Abstract

AbstractEfforts have been made to improve the risk stratification model for patients with diffuse large B-cell lymphoma (DLBCL). This study aimed to evaluate the disease prognosis using machine learning models with iterated cross validation (CV) method. A total of 122 patients with pathologically confirmed DLBCL and receiving rituximab-containing chemotherapy were enrolled. Contributions of clinical, laboratory, and metabolic imaging parameters from fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) scans to the prognosis were evaluated using five regression models, namely logistic regression, random forest, support vector classifier (SVC), deep neural network (DNN), and fuzzy neural network models. Binary classification predictions for 3-year progression free survival (PFS) and 3-year overall survival (OS) were conducted. The 10-iterated fivefold CV with shuffling process was conducted to predict the capability of learning machines. The median PFS and OS were 41.0 and 43.6 months, respectively. Two indicators were found to be independent predictors for prognosis: international prognostic index and total metabolic tumor volume (MTVsum) from FDG PET/CT. For PFS, SVC and DNN (both with accuracy 71%) have the best predictive results, of which outperformed other algorithms. For OS, the DNN has the best predictive result (accuracy 76%). Using clinical and metabolic parameters as input variables, the machine learning methods with iterated CV method add the predictive values for PFS and OS evaluation in DLBCL patients.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3