Nonlinear Analysis of Visually Normal EEGs to Differentiate Benign Childhood Epilepsy with Centrotemporal Spikes (BECTS)

Author:

Sathyanarayana Aarti,El Atrache Rima,Jackson Michele,Alter Aliza S.,Mandl Kenneth D.,Loddenkemper Tobias,Bosl William J.

Abstract

AbstractChildhood epilepsy with centrotemporal spikes, previously known as Benign Epilepsy with Centro-temporal Spikes (BECTS) or Rolandic Epilepsy, is one of the most common forms of focal childhood epilepsy. Despite its prevalence, BECTS is often misdiagnosed or missed entirely. This is in part due to the nocturnal and brief nature of the seizures, making it difficult to identify during a routine electroencephalogram (EEG). Detecting brain activity that is highly associated with BECTS on a brief, awake EEG has the potential to improve diagnostic screening for BECTS and predict clinical outcomes. For this study, 31 patients with BECTS were retrospectively selected from the BCH Epilepsy Center database along with a contrast group of 31 patients in the database who had no form of epilepsy and a normal EEG based on a clinical chart review. Nonlinear features, including multiscale entropy and recurrence quantitative analysis, were computed from 30-second segments of awake EEG signals. Differences were found between these multiscale nonlinear measures in the two groups at all sensor locations, while visual EEG inspection by a board-certified child neurologist did not reveal any distinguishing features. Moreover, a quantitative difference in the nonlinear measures (sample entropy, trapping time and the Lyapunov exponents) was found in the centrotemporal region of the brain, the area associated with a greater tendency to have unprovoked seizures, versus the rest of the brain in the BECTS patients. This difference was not present in the contrast group. As a result, the epileptic zone in the BECTS patients appears to exhibit lower complexity, and these nonlinear measures may potentially serve as a clinical screening tool for BECTS, if replicated in a larger study population.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3