The Goldilocks principle of learning unitaries by interlacing fixed operators with programmable phase shifters on a photonic chip

Author:

Zelaya Kevin,Markowitz Matthew,Miri Mohammad-Ali

Abstract

AbstractProgrammable photonic integrated circuits represent an emerging technology that amalgamates photonics and electronics, paving the way for light-based information processing at high speeds and low power consumption. Programmable photonics provides a flexible platform that can be reconfigured to perform multiple tasks, thereby holding great promise for revolutionizing future optical networks and quantum computing systems. Over the past decade, there has been constant progress in developing several different architectures for realizing programmable photonic circuits that allow for realizing arbitrary discrete unitary operations with light. Here, we systematically investigate a general family of photonic circuits for realizing arbitrary unitaries based on a simple architecture that interlaces a fixed intervening layer with programmable phase shifter layers. We introduce a criterion for the intervening operator that guarantees the universality of this architecture for representing arbitrary $$N \times N$$ N × N unitary operators with $$N+1$$ N + 1 phase layers. We explore this criterion for different photonic components, including photonic waveguide lattices and meshes of directional couplers, which allows the identification of several families of photonic components that can serve as the intervening layers in the interlacing architecture. Our findings pave the way for efficiently designing and realizing novel families of programmable photonic integrated circuits for multipurpose analog information processing.

Funder

Air Force Office of Scientific Research

Alfred P. Sloan Foundation

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3