Identification of tophi in ultrasound imaging based on transfer learning and clinical practice

Author:

Lin Tzu-Min,Lee Hsiang-Yen,Chang Ching-Kuei,Lin Ke-Hung,Chang Chi-Ching,Wu Bing-Fei,Peng Syu-Jyun

Abstract

AbstractGout is a common metabolic disorder characterized by deposits of monosodium urate monohydrate crystals (tophi) in soft tissue, triggering intense and acute arthritis with intolerable pain as well as articular and periarticular inflammation. Tophi can also promote chronic inflammatory and erosive arthritis. 2015 ACR/EULAR Gout Classification criteria include clinical, laboratory, and imaging findings, where cases of gout are indicated by a threshold score of ≥ 8. Some imaging-related findings, such as a double contour sign in ultrasound, urate in dual-energy computed tomography, or radiographic gout-related erosion, generate a score of up to 4. Clearly, the diagnosis of gout is largely assisted by imaging findings; however, dual-energy computed tomography is expensive and exposes the patient to high levels of radiation. Although musculoskeletal ultrasound is non-invasive and inexpensive, the reliability of the results depends on expert experience. In the current study, we applied transfer learning to train a convolutional neural network for the identification of tophi in ultrasound images. The accuracy of predictions varied with the convolutional neural network model, as follows: InceptionV3 (0.871 ± 0.020), ResNet101 (0.913 ± 0.015), and VGG19 (0.918 ± 0.020). The sensitivity was as follows: InceptionV3 (0.507 ± 0.060), ResNet101 (0.680 ± 0.056), and VGG19 (0.747 ± 0.056). The precision was as follows: InceptionV3 (0.767 ± 0.091), ResNet101 (0.863 ± 0.098), and VGG19 (0.825 ± 0.062). Our results demonstrate that it is possible to retrain deep convolutional neural networks to identify the patterns of tophi in ultrasound images with a high degree of accuracy.

Funder

National Science and Technology Council, Taiwan

Ministry of Education (MOE), Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3