Selective and predicable amine conjugation sites by kinetic characterization under excess reagents

Author:

Huang Wei-Chun,Huang Li-Juan,Hsu Liang-Sheng,Huang Shih-Ting,Lo Wen-Ting,Wang Tzu-Fan,Sun Wei-Ting,Wei Win-Yin,Lee Ying-Shuan,Chuang Shih-Hsien,Lee Chao-Pin,Chou Ho-Hsuan,Chen Shu-Hui

Abstract

AbstractThe site selectivity for lysine conjugation on a native protein is difficult to control and characterize. Here, we applied mass spectrometry to examine the conjugation kinetics of Trastuzumab-IgG (Her-IgG) and α-lactalbumin under excess linker concentration ([L]0) based on the modified Michaelis–Menten equation, in which the initial rate constant per amine (kNH2 = Vmax/NH2/KM) was determined by the maximum reaction rate (Vmax/NH2) under saturated accessible sites and initial amine–linker affinity (1/KM). Reductive amination (RA) displayed 3–4 times greater Vmax/NH2 and a different panel of conjugation sites than that observed for N-hydroxysuccinimide ester (NHS) chemistry using the same length of polyethylene glycol (PEG) linkers. Moreover, faster conversion power rendered RA site selectivity among accessible amine groups and a greater tunable range of linker/protein ratio for aldehyde-linkers compared to those of the same length of NHS-linkers. Single conjugation with high yield or poly-conjugations with site homogeneity was demonstrated by controlling [L]0 or gradual addition to minimize the [L]0/KM ratio. Formaldehyde, the shortest aldehyde-linker with the greatest 1/KM, exhibited the highest selectivity and was shown to be a suitable probe to predict conjugation profile of aldehyde-linkers. Four linkers on the few probe-predicted hot spots were elucidated by kinetically controlled RA with conserved drug efficacy when conjugated with the payload. This study provides insights into controlling factors for homogenous and predictable amine bioconjugation.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3