Automated monitoring of honey bees with barcodes and artificial intelligence reveals two distinct social networks from a single affiliative behavior

Author:

Gernat Tim,Jagla Tobias,Jones Beryl M.,Middendorf Martin,Robinson Gene E.

Abstract

AbstractBarcode-based tracking of individuals is revolutionizing animal behavior studies, but further progress hinges on whether in addition to determining an individual’s location, specific behaviors can be identified and monitored. We achieve this goal using information from the barcodes to identify tightly bounded image regions that potentially show the behavior of interest. These image regions are then analyzed with convolutional neural networks to verify that the behavior occurred. When applied to a challenging test case, detecting social liquid transfer (trophallaxis) in the honey bee hive, this approach yielded a 67% higher sensitivity and an 11% lower error rate than the best detector for honey bee trophallaxis so far. We were furthermore able to automatically detect whether a bee donates or receives liquid, which previously required manual observations. By applying our trophallaxis detector to recordings from three honey bee colonies and performing simulations, we discovered that liquid exchanges among bees generate two distinct social networks with different transmission capabilities. Finally, we demonstrate that our approach generalizes to detecting other specific behaviors. We envision that its broad application will enable automatic, high-resolution behavioral studies that address a broad range of previously intractable questions in evolutionary biology, ethology, neuroscience, and molecular biology.

Funder

National Academies Keck Futures Initiative

Defense Advanced Research Projects Agency

Christopher Family Foundation

National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrating computer vision and molecular neurobiology to bridge the gap between behavior and the brain;Current Opinion in Insect Science;2024-09

2. Ant social network structure is highly conserved across species;Proceedings of the Royal Society B: Biological Sciences;2024-07

3. Using honey bee flight activity data and a deep learning model as a toxicovigilance tool;Ecological Informatics;2024-07

4. Towards Robotic Mapping of a Honeybee Comb;2024 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS);2024-07-01

5. Enhancing knowledge of chemical exposures and fate in honey bee hives: Insights from colony structure and interactions;Science of The Total Environment;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3