Hexose phosphorylation for a non-enzymatic glycolysis and pentose phosphate pathway on early Earth

Author:

Hirakawa Yuta,Kakegawa Takeshi,Furukawa Yoshihiro

Abstract

AbstractGlycolysis and pentose phosphate pathways play essential roles in cellular processes and are assumed to be among the most ancient metabolic pathways. Non-enzymatic metabolism-like reactions might have occurred on the prebiotic Earth and been inherited by the biological reactions. Previous research has identified a part of the non-enzymatic glycolysis and the non-enzymatic pentose phosphate pathway from glucose 6-phosphate and 6-phosphogluconate, which are intermediates of these reactions. However, how these phosphorylated molecules were formed on the prebiotic Earth remains unclear. Herein, we demonstrate the synthesis of glucose and gluconate from simple aldehydes in alkaline solutions and the formation of glucose 6-phosphate and 6-phosphogluconate with borate using thermal evaporation. These results imply that the initial stages of glycolysis-like and pentose phosphate pathway-like reactions were achieved in borate-rich evaporative environments on prebiotic Earth, suggesting that non-enzymatic metabolism provided biomolecules and their precursors on prebiotic Earth.

Funder

Japan Society for the Promotion of Science

the WISE Program for Sustainability in the Dynamic Earth

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3