Prediction of cell migration potential on human breast cancer cells treated with Albizia lebbeck ethanolic extract using extreme machine learning

Author:

Umar Huzaifa,Aliyu Maryam Rabiu,Usman Abdullahi Garba,Ghali Umar Muhammad,Abba Sani Isah,Ozsahin Dilber Uzun

Abstract

AbstractCancer is one of the major causes of death in the modern world, and the incidence varies considerably based on race, ethnicity, and region. Novel cancer treatments, such as surgery and immunotherapy, are ineffective and expensive. In this situation, ion channels responsible for cell migration have appeared to be the most promising targets for cancer treatment. This research presents findings on the organic compounds present in Albizia lebbeck ethanolic extracts (ALEE), as well as their impact on the anti-migratory, anti-proliferative and cytotoxic potentials on MDA-MB 231 and MCF-7 human breast cancer cell lines. In addition, artificial intelligence (AI) based models, multilayer perceptron (MLP), extreme gradient boosting (XGB), and extreme learning machine (ELM) were performed to predict in vitro cancer cell migration on both cell lines, based on our experimental data. The organic compounds composition of the ALEE was studied using gas chromatography-mass spectrometry (GC–MS) analysis. Cytotoxicity, anti-proliferations, and anti-migratory activity of the extract using Tryphan Blue, MTT, and Wound Heal assay, respectively. Among the various concentrations (2.5–200 μg/mL) of the ALEE that were used in our study, 2.5–10 μg/mL revealed anti-migratory potential with increased concentrations, and they did not show any effect on the proliferation of the cells (P < 0.05; n ≥ 3). Furthermore, the three data-driven models, Multi-layer perceptron (MLP), Extreme gradient boosting (XGB), and Extreme learning machine (ELM), predict the potential migration ability of the extract on the treated cells based on our experimental data. Overall, the concentrations of the plant extract that do not affect the proliferation of the type cells used demonstrated promising effects in reducing cell migration. XGB outperformed the MLP and ELM models and increased their performance efficiency by up to 3% and 1% for MCF and 1% and 2% for MDA-MB231, respectively, in the testing phase.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3