Abstract
Abstract
In pressurized glass-forming systems, the apparent (changeable) activation volume Va(P) is the key property governing the previtreous behavior of the structural relaxation time (τ) or viscosity (η), following the Super-Barus behavior: $${\boldsymbol{\tau }}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}{\boldsymbol{,}}{\boldsymbol{\eta }}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}{\boldsymbol{\propto }}{\bf{\exp }}{\boldsymbol{(}}{{\boldsymbol{V}}}_{{\boldsymbol{a}}}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}{\boldsymbol{/}}{\boldsymbol{R}}{\boldsymbol{T}}{\boldsymbol{)}}$$
τ
(
P
)
,
η
(
P
)
∝
exp
(
V
a
(
P
)
/
R
T
)
, T = const. It is usually assumed that Va(P) = V#(P), where $${{\boldsymbol{V}}}^{{\boldsymbol{\#}}}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}={\boldsymbol{R}}{\boldsymbol{T}}{\boldsymbol{d}}\,{\boldsymbol{ln}}\,{\boldsymbol{\tau }}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}{\boldsymbol{/}}{\boldsymbol{d}}{\boldsymbol{P}}$$
V
#
(
P
)
=
R
T
d
ln
τ
(
P
)
/
d
P
or $${{\boldsymbol{V}}}^{{\boldsymbol{\#}}}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}{\boldsymbol{=}}{\boldsymbol{R}}{\boldsymbol{T}}{\boldsymbol{d}}\,{\boldsymbol{ln}}\,{\boldsymbol{\eta }}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}{\boldsymbol{/}}{\boldsymbol{d}}{\boldsymbol{P}}$$
V
#
(
P
)
=
R
T
d
ln
η
(
P
)
/
d
P
. This report shows that Va(P) ≪ V#(P) for P → Pg, where Pg denotes the glass pressure, and the magnitude V#(P) is coupled to the pressure steepness index (the apparent fragility). V#(P) and Va(P) coincides only for the basic Barus dynamics, where Va(P) = Va = const in the given pressure domain, or for P → 0. The simple and non-biased way of determining Va(P) and the relation for its parameterization are proposed. The derived relation resembles Murnaghan - O’Connel equation, applied in deep Earth studies. It also offers a possibility of estimating the pressure and volume at the absolute stability limit. The application of the methodology is shown for diisobutyl phthalate (DIIP, low-molecular-weight liquid), isooctyloxycyanobiphenyl (8*OCB, liquid crystal) and bisphenol A/epichlorohydrin (EPON 828, epoxy resin), respectively.
Publisher
Springer Science and Business Media LLC
Reference74 articles.
1. Kennedy, D. 125th Anniversary Issue: 125 outstanding problems in all of science: what is the nature of the glassy state. Science 309, 83 (2005).
2. Berthier, L. & Ediger, M. Facets of glass physics. Physics Today 69, 41–46 (2016).
3. Yoon, H. & McKenna., G. B. Testing the paradigm of an ideal glass transition: Dynamics of an ultrastable polymeric glass. Sci. Adv. 21, eaau5423 (2018).
4. Royall, C. P., Turci, F., Tatsumi, S., Russo, J. & Robinson, J. The race to the bottom: approaching the ideal glass? J. Phys.: Condens. Matt. 30, 363001 (2018).
5. Drozd-Rzoska, A. Universal behavior of the apparent fragility in ultraslow glass forming systems. Sci. Rep. 9, 6816 (2019).
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献