Ultrasound generation in water via quasi-periodically snapping polymeric core–shell micro-bead excited with radiowaves

Author:

Buonocore Salvatore,Hubarevich Aliaksandr,De Angelis Francesco

Abstract

AbstractThis work reports the results of a theoretical and numerical study showing the occurrence of stochastically resonating bistable dynamic in polymeric micro-bead of sub-micrometric size with stiff core and soft shell. The system, submerged in water, is excited with a pulsed laser working in the Mega-Hertz frequency range and tuned to match both an optical and acoustic resonance of the system. The laser interacts with the carbon nanotubes embedded in the shell of the polymeric micro-bead generating heat. The concurrent action of the generated heat with the standing acoustic oscillations, gives rise to a stochastically resonating bistable system. The system in fact is forced to switch between two states (identifiable with the creation and organized disruption of a quasi-hexagonal tessellation) via a snap-through-buckling mechanism. This phenomenon results in the unprecedented generation of pressure oscillations. These results open the way to develop a new type of core–shell micro-transducers for radioacoustic imaging applications able to work in the Mega-Hertz frequency range. From a more general thermodynamic perspective, the reported mechanism shows a remarkable periodicity and energy conversion efficiency.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3