Atypical instantaneous spatio-temporal patterns of neural dynamics in Alzheimer’s disease

Author:

Nobukawa Sou,Ikeda Takashi,Kikuchi Mitsuru,Takahashi Tetsuya

Abstract

AbstractCognitive functions produced by large-scale neural integrations are the most representative ‘emergence phenomena’ in complex systems. A novel approach focusing on the instantaneous phase difference of brain oscillations across brain regions has succeeded in detecting moment-to-moment dynamic functional connectivity. However, it is restricted to pairwise observations of two brain regions, contrary to large-scale spatial neural integration in the whole-brain. In this study, we introduce a microstate analysis to capture whole-brain instantaneous phase distributions instead of pairwise differences. Upon applying this method to electroencephalography signals of Alzheimer’s disease (AD), which is characterised by progressive cognitive decline, the AD-specific state transition among the four states defined as the leading phase location due to the loss of brain regional interactions could be promptly characterised. In conclusion, our synthetic analysis approach, focusing on the microstate and instantaneous phase, enables the capture of the instantaneous spatiotemporal neural dynamics of brain activity and characterises its pathological conditions.

Funder

JST CREST

Japan Society for the Promotion of Science,Japan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3