reString: an open-source Python software to perform automatic functional enrichment retrieval, results aggregation and data visualization

Author:

Manzini Stefano,Busnelli Marco,Colombo Alice,Franchi Elsa,Grossano Pasquale,Chiesa Giulia

Abstract

AbstractFunctional enrichment analysis is an analytical method to extract biological insights from gene expression data, popularized by the ever-growing application of high-throughput techniques. Typically, expression profiles are generated for hundreds to thousands of genes/proteins from samples belonging to two experimental groups, and after ad-hoc statistical tests, researchers are left with lists of statistically significant entities, possibly lacking any unifying biological theme. Functional enrichment tackles the problem of putting overall gene expression changes into a broader biological context, based on pre-existing knowledge bases of reference: database collections of known expression regulation, relationships and molecular interactions. STRING is among the most popular tools, providing both protein–protein interaction networks and functional enrichment analysis for any given set of identifiers. For complex experimental designs, manually retrieving, interpreting, analyzing and abridging functional enrichment results is a daunting task, usually performed by hand by the average wet-biology researcher. We have developed reString, a cross-platform software that seamlessly retrieves from STRING functional enrichments from multiple user-supplied gene sets, with just a few clicks, without any need for specific bioinformatics skills. Further, it aggregates all findings into human-readable table summaries, with built-in features to easily produce user-customizable publication-grade clustermaps and bubble plots. Herein, we outline a complete reString protocol, showcasing its features on a real use-case.

Funder

Seventh Framework Programme

Fondazione Cariplo

European Union’s Horizon 2020 research and innovation programme under the ERA-Net Cofund

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3