Author:
Santos E. A. J.,Lima K. A. L.,Ribeiro Junior L. A.
Abstract
AbstractThe category of 2D carbon allotropes has gained considerable interest due to its outstanding optoelectronic and mechanical characteristics, which are crucial for various device applications, including energy storage. This study uses density functional theory calculations, ab initio molecular dynamics (AIMD), and classical reactive molecular dynamics (MD) simulations to introduce TODD-Graphene, an innovative 2D planar carbon allotrope with a distinctive porous arrangement comprising 3-8-10-12 carbon rings. TODD-G exhibits intrinsic metallic properties with a low formation energy and stability in thermal and mechanical behavior. Calculations indicate a substantial theoretical capacity for adsorbing Li atoms, revealing a low average diffusion barrier of 0.83 eV. The metallic framework boasts excellent conductivity and positioning TODD-G as an active layer for superior lithium-ion battery efficiency. Charge carrier mobility calculations for electrons and holes in TODD-G surpass those of graphene. Classical reactive MD simulation results affirm its structural integrity, maintaining stability without bond reconstructions at 2200 K.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Fundação de Apoio à Pesquisa do Distrito Federal
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献