Phenylalanine gold nanoclusters as sensing platform for π–π interfering molecules: a case study of iodide

Author:

Amiri-Sadeghan Amir,Dinari Ali,Mohammadi Soheila,Zohrabi Tayebeh,Khodarahmi Reza,Hosseinkhani Saman,Yoon Jungwon

Abstract

AbstractThe photo-physical properties of metal nano clusters are sensitive to their surrounding medium. Fluorescence enhancement, quenching, and changes in the emitted photon properties are usual events in the sensing applications using these nano materials. Combining this sensitivity with unique properties of self-assembled structures opens new opportunities for sensing applications. Here, we synthesized gold nanoclusters by utilizing phenylalanine amino acid as both capping and reducing molecule. Phenylalanine is able to self-assemble to rod-shaped nano structure in which the π–π interaction between the aromatic rings is a major stabilizing force. Any substance as iodide anion or molecule that is able to weaken this interaction influence the fluorescence of metal nano-clusters. Since the building blocks of the self-assembled structure are made through the reaction of gold ions and phenylalanine, the oxidized products and their effect of sensing features are explored.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3