Author:
Agboka Komi Mensah,Wamalwa Mark,Mutunga James Mutuku,Tonnang Henri E. Z.
Abstract
AbstractThe control of arthropod disease vectors using chemical insecticides is vital in combating malaria, however the increasing insecticide resistance (IR) poses a challenge. Furthermore, climate variability affects mosquito population dynamics and subsequently IR propagation. We present a mathematical model to decipher the relationship between IR in Anopheles gambiae populations and climate variability. By adapting the susceptible-infected-resistant (SIR) framework and integrating temperature and rainfall data, our model examines the connection between mosquito dynamics, IR, and climate. Model validation using field data achieved 92% accuracy, and the sensitivity of model parameters on the transmission potential of IR was elucidated (e.g. μPRCC = 0.85958, p-value < 0.001). In this study, the integration of high-resolution covariates with the SIR model had a significant impact on the spatial and temporal variation of IR among mosquito populations across Africa. Importantly, we demonstrated a clear association between climatic variability and increased IR (width = [0–3.78], α = 0.05). Regions with high IR variability, such as western Africa, also had high malaria incidences thereby corroborating the World Health Organization Malaria Report 2021. More importantly, this study seeks to bolster global malaria combat strategies by highlighting potential IR ‘hotspots’ for targeted intervention by National malria control programmes.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献