Multimodal artificial intelligence-based pathogenomics improves survival prediction in oral squamous cell carcinoma

Author:

Vollmer Andreas,Hartmann Stefan,Vollmer Michael,Shavlokhova Veronika,Brands Roman C.,Kübler Alexander,Wollborn Jakob,Hassel Frank,Couillard-Despres Sebastien,Lang Gernot,Saravi Babak

Abstract

AbstractIn this study, we aimed to develop a novel prognostic algorithm for oral squamous cell carcinoma (OSCC) using a combination of pathogenomics and AI-based techniques. We collected comprehensive clinical, genomic, and pathology data from a cohort of OSCC patients in the TCGA dataset and used machine learning and deep learning algorithms to identify relevant features that are predictive of survival outcomes. Our analyses included 406 OSCC patients. Initial analyses involved gene expression analyses, principal component analyses, gene enrichment analyses, and feature importance analyses. These insights were foundational for subsequent model development. Furthermore, we applied five machine learning/deep learning algorithms (Random Survival Forest, Gradient Boosting Survival Analysis, Cox PH, Fast Survival SVM, and DeepSurv) for survival prediction. Our initial analyses revealed relevant gene expression variations and biological pathways, laying the groundwork for robust feature selection in model building. The results showed that the multimodal model outperformed the unimodal models across all methods, with c-index values of 0.722 for RSF, 0.633 for GBSA, 0.625 for FastSVM, 0.633 for CoxPH, and 0.515 for DeepSurv. When considering only important features, the multimodal model continued to outperform the unimodal models, with c-index values of 0.834 for RSF, 0.747 for GBSA, 0.718 for FastSVM, 0.742 for CoxPH, and 0.635 for DeepSurv. Our results demonstrate the potential of pathogenomics and AI-based techniques in improving the accuracy of prognostic prediction in OSCC, which may ultimately aid in the development of personalized treatment strategies for patients with this devastating disease.

Funder

Universitätsklinikum Würzburg

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3