Ultrafast beam pattern modulation by superposition of chirped optical vortex pulses

Author:

Honda Asami,Yamane Keisaku,Iwasa Kohei,Oka Kazuhiko,Toda Yasunori,Morita Ryuji

Abstract

AbstractAs an extension of pulse shaping techniques using the space–time coupling of ultrashort pulses or chirped pulses, we demonstrated the ultrafast beam pattern modulation by the superposition of chirped optical vortex pulses with orthogonal spatial modes. The stable and robust modulations with a modulation frequency of sub-THz were carried out by using the precise phase control technique of the constituent pulses in both the spatial and time/frequency domains. The performed modulations were ultrafast ring-shaped optical lattice modulation with 2, 4 and 6 petals, and beam pattern modulations in the radial direction. The simple linear fringe modulation was also demonstrated with chirped spatially Gaussian pulses. While the input pulse energy of the pulses to be modulated was 360 $$\upmu $$ μ J, the output pulse energy of the modulated pulses was 115 $$\upmu $$ μ J with the conversion efficiency of $$\sim $$ 32%. Demonstrating the superposition of orthogonal spatial modes in several ways, this ultrafast beam pattern modulation technique with high intensity can be applicable to the spatially coherent excitation of quasi-particles or collective excitation of charge and spin with dynamic degrees of freedom. Furthermore, we analyzed the Poynting vector and OAM of the composed chirped OV pulses. Although the ring-shaped optical lattice composed of OV pulse with topological charges of $$\pm \, \ell $$ ± is rotated in a sub-THz frequency, the net orbital angular momentum (OAM) averaged over one optical period is found to be negligible. Hence, it is necessary to require careful attention to the application of the OAM transfer interaction with matter by employing such rotating ring-shaped optical lattices.

Funder

JST CREST

KAKENHI Grants-in-Aid

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3