Author:
Tani Keisuke,Iio Shintaro,Kamiya Masato,Yoshizawa Kohei,Shigematsu Takashi,Fujishima Ichiro,Tanaka Satoshi
Abstract
AbstractAwareness of the direction of the body’s (longitudinal) axis is fundamental for action and perception. The perceived body axis orientation is strongly biased during body tilt; however, the neural substrates underlying this phenomenon remain largely unknown. Here, we tackled this issue using a neuropsychological approach in patients with hemispheric stroke. Thirty-seven stroke patients and 20 age-matched healthy controls adjusted a visual line with the perceived body longitudinal axis when the body was upright or laterally tilted by 10 degrees. The bias of the perceived body axis caused by body tilt, termed tilt-dependent error (TDE), was compared between the groups. The TDE was significantly smaller (i.e., less affected performance by body tilt) in the stroke group (15.9 ± 15.9°) than in the control group (25.7 ± 17.1°). Lesion subtraction analysis and Bayesian lesion-symptom inference revealed that the abnormally reduced TDEs were associated with lesions in the right occipitotemporal cortex, such as the superior and middle temporal gyri. Our findings contribute to a better understanding of the neuroanatomy of body-centred spatial coding during whole-body tilt.
Funder
Japan Society for the Promotion of Science
Hamamatsu University School of Medicine
Otemon Gakuin University
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献