Mutations associated with autism lead to similar synaptic and behavioral alterations in both sexes of male and female mouse brain

Author:

Tripathi Manish Kumar,Ojha Shashank Kumar,Kartawy Maryam,Khaliulin Igor,Hamoudi Wajeha,Amal Haitham

Abstract

AbstractAutism spectrum disorder (ASD) is a neurodevelopmental disorder based on synaptic abnormalities. The estimated prevalence rate of male individuals diagnosed with ASD prevails over females is in a proportion of 4:1. Consequently, males remain the main focus in ASD studies in clinical and experimental settings. Meanwhile, some studies point to an underestimation of this disorder in females. In this work, we studied the sex differences of the synaptic and behavioral phenotypes of ASD mouse models. Juvenile male and female Shank3Δ4–22 and Cntnap2−/− mutant mice and their WT littermates were used in the experiments. The animals were subjected to a Three-Chamber Sociability Test, then euthanized, and the whole cortex was used for the evaluation of the synaptic phenotype. Protein levels of glutamatergic (NR1) and GABAergic (GAD1 and VGAT) neuronal markers were measured. Protein level of synaptophysin (Syp) was also measured. Dendritic spine density in somatosensory neurons was analyzed by Golgi staining methods. Spine Density and GAD1, NR1, VGAT, and Syp levels were significantly reduced in Shank3Δ4–22 and Cntnap2−/− mice compared to the control group irrespective of sex, indicating impaired synaptic development in the mutant mice. These results were consistent with the lack of differences in the three-chamber sociability test between male and female mice. In conclusion, female ASD mice of both mutations undergo similar synaptic aberrations as their male counterparts and need to be studied along with the male animals. Finally, this work urges the psychiatry scientific community to use both sexes in their investigations.

Funder

Israel Science Foundation

Eagles Autism Foundation

U.S. Department of Defense

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3