NLR, MLR, PLR and RDW to predict outcome and differentiate between viral and bacterial pneumonia in the intensive care unit

Author:

Ng Wincy Wing-SzeORCID,Lam Sin-ManORCID,Yan Wing-WaORCID,Shum Hoi-PingORCID

Abstract

AbstractThe neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), and red cell distribution width (RDW) are emerging biomarkers to predict outcomes in general ward patients. However, their role in the prognostication of critically ill patients with pneumonia is unclear. A total of 216 adult patients were enrolled over 2 years. They were classified into viral and bacterial pneumonia groups, as represented by influenza A virus and Streptococcus pneumoniae, respectively. Demographics, outcomes, and laboratory parameters were analysed. The prognostic power of blood parameters was determined by the respective area under the receiver operating characteristic curve (AUROC). Performance was compared using the APACHE IV score. Discriminant ability in differentiating viral and bacterial aetiologies was examined. Viral and bacterial pneumonia were identified in 111 and 105 patients, respectively. In predicting hospital mortality, the APACHE IV score was the best prognostic score compared with all blood parameters studied (AUC 0.769, 95% CI 0.705–0.833). In classification tree analysis, the most significant predictor of hospital mortality was the APACHE IV score (adjusted P = 0.000, χ2 = 35.591). Mechanical ventilation was associated with higher hospital mortality in patients with low APACHE IV scores ≤ 70 (adjusted P = 0.014, χ2 = 5.999). In patients with high APACHE IV scores > 90, age > 78 (adjusted P = 0.007, χ2 = 11.221) and thrombocytopaenia (platelet count ≤ 128, adjusted P = 0.004, χ2 = 12.316) were predictive of higher hospital mortality. The APACHE IV score is superior to all blood parameters studied in predicting hospital mortality. The single inflammatory marker with comparable prognostic performance to the APACHE IV score is platelet count at 48 h. However, there is no ideal biomarker for differentiating between viral and bacterial pneumonia.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3