Molecular insights into the interactions between PEG carriers and drug molecules from Celastrus hindsii: a multi-scale simulation study

Author:

Ho Thi H.,Tong Hien Duy,Trinh Thuat T.

Abstract

AbstractEfficient drug delivery is crucial for the creation of effective pharmaceutical treatments, and polyethylene glycol (PEG) carriers have been emerged as promising candidates for this purpose due to their bio-compatibility, enhancement of drug solubility, and stability. In this study, we utilized molecular simulations to examine the interactions between PEG carriers and selected drug molecules extracted from Celastrus hindsii: Hindsiilactone A, Hindsiiquinoflavan B, Maytenfolone A, and Celasdin B. The simulations provided detailed insights into the binding affinity, stability, and structural properties of these drug molecules when complexed with PEG carriers. A multi-scale approach combining density functional theory (DFT), extended tight-binding (xTB), and molecular dynamics (MD) simulations was conducted to investigate both unbound and bound states of PEG/drug systems. The results from DFT and xTB calculations revealed that the unbound complex has an unfavorable binding free energy, primarily due to negative contributions of delta solvation free energy and entropy. The MD simulations provided more detailed insights into the interactions between PEG and drug molecules in water solutions. By integrating the findings from the multi-scale simulations, a comprehensive picture of the unbound and bound states of PEG and drug systems were obtained. This information is valuable for understanding the molecular mechanisms governing the binding of drugs in PEG-based delivery platforms, and it contributes to the rational design and optimization of these systems.

Funder

Porous Media Laboratory

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3