Effect of bacterial resistant zwitterionic derivative incorporation on the physical properties of resin-modified glass ionomer luting cement

Author:

Wu Chengzan,Kim Min-Ji,Mangal Utkarsh,Seo Ji-Young,Kim Ji-Yeong,Kim Junho,Park Ju-Young,Kwon Jae-Sung,Choi Sung-Hwan

Abstract

AbstractBiofilms induce microbial-mediated surface roughening and deterioration of cement. In this study, zwitterionic derivatives (ZD) of sulfobetaine methacrylate (SBMA) and 2-methacryloyloxyethyl phosphorylcholine, were added in concentrations of 0, 1, and 3% to three different types of commercially available resin-modified glass ionomer cement (RMGIC) (RMC-I: RelyX Luting 2, RMC-II: Nexus RMGI, and RMC-III: GC FujiCEM 2). The unmodified RMGICs served as the control group for comparison. The resistance of Streptococcus mutans to ZD-modified RMGIC was evaluated with a monoculture biofilm assay. The following physical properties of the ZD-modified RMGIC were assessed: wettability, film thickness, flexural strength, elastic modulus, shear bond strength, and failure mode. The ZD-modified RMGIC significantly inhibited biofilm formation, with at least a 30% reduction compared to the control group. The addition of ZD improved the wettability of RMGIC; however, only 3% of the SBMA group was statistically different (P < 0.05). The film thickness increased in proportion to the increasing ZD concentrations; there was no statistical difference within the RMC-I (P > 0.05). The experimental groups' flexural strength, elastic modulus, and shear bond strength showed an insignificant decrease from the control group; there was no statistical difference within the RMC-I (P > 0.05). The mode of failure differed slightly in each group, but all groups showed dominance in the adhesive and mixed failure. Thus, the addition of 1 wt.% ZD in RMGIC favorably enhanced the resistance to Streptococcus mutans without any tangible loss in flexural and shear bond strength.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3