Tumor collagen framework from bright-field histology images predicts overall survival of breast carcinoma patients

Author:

Morkunas Mindaugas,Zilenaite Dovile,Laurinaviciene Aida,Treigys Povilas,Laurinavicius Arvydas

Abstract

AbstractWithin the tumor microenvironment, specifically aligned collagen has been shown to stimulate tumor progression by directing the migration of metastatic cells along its structural framework. Tumor-associated collagen signatures (TACS) have been linked to breast cancer patient outcome. Robust and affordable methods for assessing biological information contained in collagen architecture need to be developed. We have developed a novel artificial neural network (ANN) based approach for tumor collagen segmentation from bright-field histology images and have tested it on a set of tissue microarray sections from early hormone receptor-positive invasive ductal breast carcinoma stained with Sirius Red (1 core per patient, n = 92). We designed and trained ANNs on sets of differently annotated image patches to segment collagen fibers and extracted 37 features of collagen fiber morphometry, density, orientation, texture, and fractal characteristics in the entire cohort. Independent instances of ANN models trained on highly differing annotations produced reasonably concordant collagen segmentation masks and allowed reliable prognostic Cox regression models (with likelihood ratios 14.11–22.99, at p-value < 0.05) superior to conventional clinical parameters (size of the primary tumor (T), regional lymph node status (N), histological grade (G), and patient age). Additionally, we noted statistically significant differences of collagen features between tumor grade groups, and the factor analysis revealed features resembling the TACS concept. Our proposed method offers collagen framework segmentation from bright-field histology images and provides novel image-based features for better breast cancer patient prognostication.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3