Idiopathic pulmonary fibrosis-specific Bayesian network integrating extracellular vesicle proteome and clinical information

Author:

Tomoto Mei,Mineharu Yohei,Sato Noriaki,Tamada Yoshinori,Nogami-Itoh Mari,Kuroda Masataka,Adachi Jun,Takeda Yoshito,Mizuguchi Kenji,Kumanogoh Atsushi,Natsume-Kitatani Yayoi,Okuno Yasushi

Abstract

AbstractIdiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by severe lung fibrosis and a poor prognosis. Although the biomolecules related to IPF have been extensively studied, molecular mechanisms of the pathogenesis and their association with serum biomarkers and clinical findings have not been fully elucidated. We constructed a Bayesian network using multimodal data consisting of a proteome dataset from serum extracellular vesicles, laboratory examinations, and clinical findings from 206 patients with IPF and 36 controls. Differential protein expression analysis was also performed by edgeR and incorporated into the constructed network. We have successfully visualized the relationship between biomolecules and clinical findings with this approach. The IPF-specific network included modules associated with TGF-β signaling (TGFB1 and LRC32), fibrosis-related (A2MG and PZP), myofibroblast and inflammation (LRP1 and ITIH4), complement-related (SAA1 and SAA2), as well as serum markers, and clinical symptoms (KL-6, SP-D and fine crackles). Notably, it identified SAA2 associated with lymphocyte counts and PSPB connected with the serum markers KL-6 and SP-D, along with fine crackles as clinical manifestations. These results contribute to the elucidation of the pathogenesis of IPF and potential therapeutic targets.

Funder

Ministry of Health, Labor and Welfare of Japan

Cabinet Office of Japan Government for the Public/Private R&D Investment Strategic Expansion PrograM

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3