Evaluation of rock and fluid intermolecular interaction between asphaltene and sand minerals using electrochemical, analytical spectroscopy and microscopy techniques

Author:

Taheri-Shakib Jaber,Esfandiarian Ali,Rajabi-Kochi Mahyar,Kazemzadeh Ezzatallah,Afkhami Karaei Mohammad

Abstract

AbstractLong-time contact of heavy crude oil with rock leads to an adsorption phenomenon, which causes the rock surface to become oil-wet and appears as a barrier to the fluid flow in the porous media. However precise understanding of how asphaltene fractions influence sand wettability is lacking. The wetness of neat and asphaltene-aged sandstone was calculated using two relative permeability and contact angle methods. Then the molecular interaction between asphaltene and sand minerals was systematically analyzed using Fourier-transform infrared spectroscopy. Furthermore, the zeta potential was representative of electrostatic properties and surface charge alteration of the sand after these phenomena. Scanning electron microscopy with energy-dispersive X-ray (EDX) analysis also showed elemental mapping and dispersion of asphaltene particles on the rock surface. According to contact angle and EDX analyses of asphaltene samples, the contact angle rises from 115° to 141° by an increase in carbon adsorption on the sand surface from 8.23 to 41.56%. Spectroscopy results demonstrated that hydrogen-bonding, π-bonding, and sulfur-containing compounds such as sulfoxide improve asphaltene adsorption onto the sand surface. The higher the aromaticity index and hydrogen potential index of asphaltene, the greater the ability of asphaltene to change wettability. Adsorption of surface active components would make the surface charge of the sand more negative. The presence of nitrogen/sulfur-containing functional groups on the sand surface changed the electrostatic properties, as a sand surface coated with asphaltene would reduce the percentage of metal cations.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3