About lipid metabolism in Hermetia illucens (L. 1758): on the origin of fatty acids in prepupae

Author:

Hoc B.,Genva M.,Fauconnier M.-L.,Lognay G.,Francis F.,Caparros Megido R.

Abstract

AbstractAlthough increasingly targeted in animal nutrition, black soldier fly larvae or prepupae (BSF, Hermetia illucens L. 1758) require the characterization and modulation of their fatty acid profile to become fully integrated within the feed sector. This improvement will only be possible by the understanding of underlaying biochemical pathways of fatty acid synthesis in BSF. In this study, we hypothesized a labelling of de novo synthesized fatty acids in BSF by the incorporation of deuterated water (D2O) in their feed. Three batches of fifty larvae were reared on two diets with different polyunsaturated fatty acid profiles moistened with 40% of H2O or D2O: chicken feed or 40% of chicken feed and 60% of flax cake. Although the occurrence of D2O in insect feed increased the larval development time and decreased prepupal weight, it was possible to track the biosynthesis of fatty acids through deuterium labelling. Some fatty acids (decanoic, lauric or myristic acid) were exclusively present in their deuterated form while others (palmitic, palmitoleic or oleic acid) were found in two forms (deuterated or not) indicating that BSF can partially produce these fatty acids via biosynthesis pathways and not only by bioaccumulation from the diet. These results suggest the importance of carbohydrates as a source of acetyl-CoA in the constitution of the BSF fatty acid profile but also the potential importance of specific enzymes (e.g. thioesterase II or Δ12 fat2 desaturase) in BSF fatty acid metabolism. Finally, nearly no deuterated polyunsaturated fatty acids were found in BSF fed with deuterium confirming that BSF is not able to produce these types of fatty acids. Despite the high levels of linolenic acid in flax-enriched diets, BSF will simply bioaccumulate around 13% of this fatty acid and will metabolize approximately two-thirds of it into saturated fatty acids as lauric or myristic acid.

Funder

Fédération Wallonie-Bruxelles

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3