Abstract
Abstract
The scalability and efficiency of numerical methods on parallel computer architectures is of prime importance as we march towards exascale computing. Classical methods like finite difference schemes and finite volume methods have inherent roadblocks in their mathematical construction to achieve good scalability. These methods are popularly used to solve the Navier-Stokes equations for fluid flow simulations. The discontinuous Galerkin family of methods for solving continuum partial differential equations has shown promise in realizing parallel efficiency and scalability when approaching petascale computations. In this paper an explicit modal discontinuous Galerkin (DG) method utilizing Implicit Large Eddy Simulation (ILES) is proposed for unsteady turbulent flow simulations involving the three-dimensional Navier-Stokes equations. A study of the method was performed for the Taylor-Green vortex case at a Reynolds number ranging from 100 to 1600. The polynomial order P = 2 (third order accurate) was found to closely match the Direct Navier-Stokes (DNS) results for all Reynolds numbers tested outside of Re = 1600, which had a normalized RMS error of 3.43 × 10−4 in the dissipation rate for a 603 element mesh. The scalability and performance study of the method was then conducted for a Reynolds number of 1600 for polynomials orders from P = 2 to P = 6. The highest order polynomial that was tested (P = 6) was found to have the most efficient scalability using both the MPI and OpenMP implementations.
Funder
Science Applications International Corporation
National Science Foundation
NSF | National Science Board
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献