Highly efficient heat-dissipation power driven by ferromagnetic resonance in MFe2O4 (M = Fe, Mn, Ni) ferrite nanoparticles

Author:

Lee Jae-Hyeok,Kim Yongsub,Kim Sang-Koog

Abstract

AbstractWe experimentally demonstrated that heat-dissipation power driven by ferromagnetic resonance (FMR) in superparamagnetic nanoparticles of ferrimagnetic MFe2O4 (M = Fe, Mn, Ni) gives rise to highly localized incrementation of targeted temperatures. The power generated thereby is extremely high: two orders of magnitude higher than that of the conventional Néel-Brownian model. From micromagnetic simulation and analytical derivation, we found robust correlations between the temperature increment and the intrinsic material parameters of the damping constant as well as the saturation magnetizations of the nanoparticles’ constituent materials. Furthermore, the magnetization–dissipation-driven temperature increments were reliably manipulated by extremely low strengths of applied AC magnetic fields under resonance field conditions. Our experimental results and theoretical formulations provide for a better understanding of the effect of FMR on the efficiency of heat generation as well as straightforward guidance for the design of advanced materials for control of highly localized incrementation of targeted temperatures using magnetic particles in, for example, magnetic hyperthermia bio-applications.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3