Structural evolution of in situ polymerized poly(L-lactic acid) nanocomposite for smart textile application

Author:

Hazarika Doli,Kumar Amit,Katiyar Vimal

Abstract

AbstractThis present study demonstrated the preparation of a highly crystalline anatase (ana) form of titanium oxide (TiO2) doped silk nanocrystal (SNC) nanohybrid (ana-TCS) of diameter (7.5 ± 1.4 nm) by the sol–gel method using titanium (IV) butoxide as the hydrolysis material. This prepared nanohybrid with surface hydroxyl groups acted as a co-initiator for the synthesis of poly(L-lactic acid) (PLLA)-g-ana-TSC nanocomposite with grafted PLLA chains via the in situ polymerization technique, using tin-octoate as a catalyst. The fabricated nanocomposite had a high number average molecular weight of 83 kDa with good processibility. This prepared nanocomposite was hydrophobic in nature, with a contact angle of 105°, which was further enhanced to 122 ± 1° when processed via electrospinning technique into a non-woven fabric. The prepared nanocomposite could degrade up to 43% methylene blue dye in 15 days. This nanocomposite showed no significant molecular weight reduction after 1 h of aqeous treatment, which could be attributed to its hydrophobic nature, inhibiting its degradation. However, 50% degradation was observed for the nanocomoposite whereas, PLLA demonstrated 25% degradation in 15 days, after its end-of-life. Thus, this study revealed that the in situ synthesized PLA-ana-TCS nanocomposite could be targeted for use as a hydrophobic, self-cleaning, dye-degradable fabric.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3