An innovative method for soil vapor extraction to improve extraction and tail gas treatment efficiency

Author:

Ding Yang,Zhang Yuling,Deng Zhiqun,Song Hewei,Wang Jili,Guo Haizhao

Abstract

AbstractThis study aims to improve soil vapor extraction (SVE) to address its shortcomings in treating halogenated hydrocarbon-contaminated soil. Indoor simulation experiments based on SVE were conducted to provide technical guidance for the remediation of 1,2-DCA-contaminated soil, with the overall intention of soil repair and ecological restoration. A thermal oxidation SVE (TOSVE) system was designed on the basis of SVE technology for application in the remediation of low-permeability soil contaminated with halogenated hydrocarbons from a chemical plant in Northeast China. Laboratory simulation experiments were conducted based on TOSVE technology to study the removal of target pollutants under different organic contents, moisture and air speeds. For the first time, a new material, scoria, was added to the oxidant at different proportions, and its effect on the exhaust gas treatment efficiency was examined. Thermal extraction improved the extraction efficiency of pollutants from low-permeability soil. Moreover, the adsorption–oxidation effect of 0.1–0.25 mm scoria prepared by 20% Na2S2O8 on 1,2-dichloroethane (1,2-DCA) in tail gas was higher than that of the oxidant without scoria, indicating that scoria is effective in tail gas treatment.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3