Development of an ex vivo preclinical respiratory model of idiopathic pulmonary fibrosis for aerosol regional studies

Author:

Montigaud Yoann,Périnel-Ragey Sophie,Plantier LaurentORCID,Leclerc Lara,Goy ClémenceORCID,Clotagatide Anthony,Prévôt Nathalie,Pourchez JérémieORCID

Abstract

AbstractIdiopathic pulmonary fibrosis is a progressive disease with unsatisfactory systemic treatments. Aerosol drug delivery to the lungs is expected to be an interesting route of administration. However, due to the alterations of lung compliance caused by fibrosis, local delivery remains challenging. This work aimed to develop a practical, relevant and ethically less restricted ex vivo respiratory model of fibrotic lung for regional aerosol deposition studies. This model is composed of an Ear-Nose-Throat replica connected to a sealed enclosure containing an ex vivo porcine respiratory tract, which was modified to mimic the mechanical properties of fibrotic lung parenchyma - i.e. reduced compliance. Passive respiratory mechanics were measured. 81mKr scintigraphies were used to assess the homogeneity of gas-ventilation, while regional aerosol deposition was assessed with 99mTc-DTPA scintigraphies. We validated the procedure to induce modifications of lung parenchyma to obtain aimed variation of compliance. Compared to the healthy model, lung respiratory mechanics were modified to the same extent as IPF-suffering patients. 81mKr gas-ventilation and 99mTc-DTPA regional aerosol deposition showed results comparable to clinical studies, qualitatively. This ex vivo respiratory model could simulate lung fibrosis for aerosol regional deposition studies giving an interesting alternative to animal experiments, accelerating and facilitating preclinical studies before clinical trials.

Funder

Agence Nationale de la Recherche

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3